Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 748
Filtrar
1.
ACS Chem Biol ; 19(2): 451-461, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318850

RESUMO

Enabling control over the bioactivity of proteins with light, along with the principles of photopharmacology, has the potential to generate safe and targeted medical treatments. Installing light sensitivity in a protein can be achieved through its covalent modification with a molecular photoswitch. The general challenge in this approach is the need for the use of low energy visible light for the regulation of bioactivity. In this study, we report visible light control over the cytolytic activity of a protein. A water-soluble visible-light-operated tetra-ortho-fluoro-azobenzene photoswitch was synthesized by utilizing the nucleophilic aromatic substitution reaction for installing a solubilizing sulfonate group onto the electron-poor photoswitch structure. The azobenzene was attached to two cysteine mutants of the pore-forming protein fragaceatoxin C (FraC), and their respective activities were evaluated on red blood cells. For both mutants, the green-light-irradiated sample, containing predominantly the cis-azobenzene isomer, was more active compared to the blue-light-irradiated sample. Ultimately, the same modulation of the cytolytic activity pattern was observed toward a hypopharyngeal squamous cell carcinoma. These results constitute the first case of using low energy visible light to control the biological activity of a toxic protein.


Assuntos
Compostos Azo , Luz , Humanos , Compostos Azo/toxicidade , Compostos Azo/química , Proteínas/metabolismo , Isomerismo , Porinas/metabolismo
2.
Mol Biol Rep ; 51(1): 150, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38236489

RESUMO

BACKGROUND: Azo dyes are widely used in the food industry to prevent color loss during processing and storage of products. This study aimed to investigate the effect of a diazo dye Brilliant Black PN (E151) on oxidative stress-related parameters in fruit flies (Drosophila melanogaster) at biochemical and molecular levels. METHODS AND RESULTS: Third instar larvae were transferred to a medium containing the dye at different doses (1, 2.5, and 5 mg/mL). Gene expression and activity of superoxide dismutase, catalase (CAT), glutathione peroxidase (GPX), and acetylcholinesterase (AChE) enzymes were determined in the heads of adult flies obtained from these larvae. In addition, the glutathione (GSH) and malondialdehyde levels were measured using spectrophotometric analysis. Mitochondrial DNA (mtDNA) copy number was also detected by real-time PCR. The results showed that treatment with 5 mg/mL of the dye caused a decrease in both gene expression and enzyme activity of CAT and GPx. Moreover, the same dose of dye treatment decreased AChE activity, GSH level, and mtDNA copy number. CONCLUSIONS: As a result, Brilliant Black PN dye can trigger toxicity by altering the level and activity of oxidative stress-related biomarkers in a dose-dependent manner. Therefore, more comprehensive studies are needed to elucidate the side effect mechanism and toxicity of this dye.


Assuntos
Acetilcolinesterase , Drosophila melanogaster , Animais , Drosophila melanogaster/genética , Acetilcolinesterase/genética , Drosophila , Compostos Azo/toxicidade , DNA Mitocondrial/genética , Glutationa , Larva , Estresse Oxidativo
3.
Molecules ; 29(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38257390

RESUMO

The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.


Assuntos
Compostos Azo , Lacase , Polyporaceae , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/toxicidade , Poli A
4.
Environ Sci Pollut Res Int ; 31(1): 657-667, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38015401

RESUMO

Azo dyes find applications across various sectors including food, pharmaceuticals, cosmetics, printing, and textiles. The contaminating effects of dyes on aquatic environments arise from toxic effects caused by their long-term presence in the environment, buildup in sediments, particularly in aquatic species, degradation of pollutants into mutagenic or mutagenic compounds, and low aerobic biodegradability. Therefore, we theoretically propose the first steps of the degradation of azo dyes based on the interaction of hydroperoxyl radical (•OOH) with the dye. This interaction is studied by the OC and ON mechanisms in three azo dyes: azobenzene (AB), disperse orange 3 (DO3), and disperse red 1 (DR1). Rate constants calculated at several temperatures show a preference for the OC mechanism in all the dyes with lower activation energies than the ON mechanism. The optical properties were calculated and because the dye-•OOH systems are open shell, to verify the validity of the results, a study of the spin contamination of the ground [Formula: see text] and excited states [Formula: see text] was previously performed. Most of the excited states calculated are acceptable as doublet states. The absorption spectra of the dye-•OOH systems show a decrease in the intensity of the bands compared to the isolated dyes and the appearance of a new band of the type π → π* at a longer wavelength in the visible region, achieving up to 868 nm. This demonstrates that the reaction with the •OOH radical could be a good alternative for the degradation of the azo dyes.


Assuntos
Compostos Azo , Poluentes Químicos da Água , Compostos Azo/toxicidade , Corantes/toxicidade , Alérgenos , Mutagênicos/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Braz J Biol ; 83: e277577, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055583

RESUMO

Amazonian strains of Cyathus spp. and Geastrum spp. were studied for the ability to discolor the trypan blue azo dye and reduce its toxicity. Discoloration of trypan blue dye (0.05%) was evaluated in solid and aqueous medium over different periods. The reduction of dye toxicity after treatment was assessed by seed germination and the development of lettuce seedlings (Lactuca sativa L.) and toxicity test in Artemia salina (L.) larvae. All evaluated strains showed the potential to reduce the color intensity of trypan blue dye. Cyathus strains reached 96% discoloration, and C. albinus and C. limbatus also reduced dye toxicity. Geastrum strains showed a high efficiency degree in color reduction, reaching 98% discoloration, however, the by-products generated during the process presented toxicity and require further investigation. For the first time, Amazonian strains of gasteroid fungi degrading trypan blue are reported, some even reducing its toxicity. Thus, making them promising sources of enzymes of interest to bioremediation scenarios involving synthetic dyes.


Assuntos
Basidiomycota , Azul Tripano , Compostos Azo/toxicidade , Compostos Azo/metabolismo , Biodegradação Ambiental , Basidiomycota/metabolismo , Fungos , Corantes/toxicidade
6.
Food Chem Toxicol ; 182: 114193, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37980979

RESUMO

Tartrazine (E102, FD&C Yellow 5) is a vibrant yellow azo dye added to many processed foods. The safety of this ubiquitous chemical has not been fully elucidated, and it has been linked to allergic reactions and ADHD in some individuals. In our study, bacterial species isolated from human stool decolourised tartrazine and, upon exposure to air, a purple compound formed. Tartrazine is known to undergo reduction in the gut to sulfanilic acid and 4-amino-3-carboxy-5-hydroxy-1-(4-sulfophenyl)pyrazole (SCAP). These metabolites and their derivatives are relevant to the toxicology of tartrazine. The toxicity of sulfanilic acid has been studied before, but the oxidative instability of SCAP has previously prevented full characterisation. We have verified the chemical identity of SCAP and confirmed that the purple-coloured oxidation derivative is 4-(3-carboxy-5-hydroxy-1-(4-sulfophenyl)-1H-pyrazol-4-yl)imino-5-oxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid (purpurazoic acid, PPA), as proposed by Westöö in 1965. A yellow derivative of SCAP is proposed to be the hydrolysed oxidation product, 4,5-dioxo-1-(4-sulfophenyl)-4,5-dihydro-1H-pyrazole-3-carboxylic acid. SCAP and PPA are moderately toxic to human cells (IC50 89 and 78 µM against HEK-293, respectively), but had no apparent effect on Escherichia coli and Bacillus subtilis bacteria. These results prompt further analyses of the toxicology of tartrazine and its derivatives.


Assuntos
Compostos Azo , Tartrazina , Humanos , Tartrazina/toxicidade , Tartrazina/química , Compostos Azo/toxicidade , Células HEK293 , Oxirredução , Ácidos Carboxílicos , Pirazóis
7.
Food Chem Toxicol ; 178: 113935, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37429408

RESUMO

Azo dyes, including Tartrazine, Sunset Yellow, and Carmoisine, are added to foods to provide color, but they have no value with regard to nutrition, food preservation, or health benefits. Because of their availability, affordability, stability, and low cost, and because they provide intense coloration to the product without contributing unwanted flavors, the food industry often prefers to use synthetic azo dyes rather than natural colorants. Food dyes have been tested by regulatory agencies responsible for guaranteeing consumer safety. Nevertheless, the safety of these colorants remains controversial; they have been associated with adverse effects, particularly due to the reduction and cleavage of the azo bond. Here, we review the features, classification, regulation, toxicity, and alternatives to the use of azo dyes in food.


Assuntos
Compostos Azo , Corantes de Alimentos , Compostos Azo/toxicidade , Compostos Azo/análise , Tartrazina/toxicidade , Tartrazina/análise , Corantes/toxicidade , Alimentos , Indústria Alimentícia , Corantes de Alimentos/toxicidade
8.
Food Chem Toxicol ; 178: 113932, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37451600

RESUMO

Azo compounds are widely distributed synthetic chemicals in the modern world. Their most important applications are as dyes, but, in addition, several azo compounds are used as pharmaceuticals. Ingested azo compounds can be reduced by the action of bacteria in the gut, where the oxygen tension is low, and the development of microbiome science has allowed more precise delineation of the roles of specific bacteria in these processes. Reduction of the azo bond of an azo compound generates two distinct classes of aromatic amine metabolites: the starting material that was used in the synthesis of the azo compound and a product which is formed de novo by metabolism. Reductive metabolism of azo compounds can have toxic consequences, because many aromatic amines are toxic/genotoxic. In this review, we discuss aspects of the development and application of azo compounds in industry and medicine. Current understanding of the toxicology of azo compounds and their metabolites is illustrated with four specific examples - Disperse Dyes used for dyeing textiles; the drugs phenazopyridine and eltrombopag; and the ubiquitous food dye, tartrazine - and knowledge gaps are identified. SUBMISSION TO: FCT VSI: Toxicology of Dyes.


Assuntos
Compostos Azo , Corantes , Compostos Azo/toxicidade , Compostos Azo/química , Corantes/toxicidade , Corantes/química , Tartrazina , Bactérias/metabolismo , Aminas/química
9.
Environ Int ; 176: 107952, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37224677

RESUMO

BACKGROUND: Azo dyes are used in textiles and leather clothing. Human exposure can occur from wearing textiles containing azo dyes. Since the body's enzymes and microbiome can cleave azo dyes, potentially resulting in mutagenic or carcinogenic metabolites, there is also an indirect health concern on the parent compounds. While several hazardous azo dyes are banned, many more are still in use that have not been evaluated systematically for potential health concerns. This systematic evidence map (SEM) aims to compile and categorize the available toxicological evidence on the potential human health risks of a set of 30 market-relevant azo dyes. METHODS: Peer-reviewed and gray literature was searched and over 20,000 studies were identified. These were filtered using Sciome Workbench for Interactive computer-Facilitated Text-mining (SWIFT) Review software with evidence stream tags (human, animal, in vitro) yielding 12,800 unique records. SWIFT Active (a machine-learning software) further facilitated title/abstract screening. DistillerSR software was used for additional title/abstract, full-text screening, and data extraction. RESULTS: 187 studies were identified that met populations, exposures, comparators, and outcomes (PECO) criteria. From this pool, 54 human, 78 animal, and 61 genotoxicity studies were extracted into a literature inventory. Toxicological evidence was abundant for three azo dyes (also used as food additives) and sparse for five of the remaining 27 compounds. Complementary search in ECHA's REACH database for summaries of unpublished study reports revealed evidence for all 30 dyes. The question arose of how this information can be fed into an SEM process. Proper identification of prioritized dyes from various databases (including U.S. EPA's CompTox Chemicals Dashboard) turned out to be a challenge. Evidence compiled by this SEM project can be evaluated for subsequent use in problem formulation efforts to inform potential regulatory needs and prepare for a more efficient and targeted evaluation in the future for human health assessments.


Assuntos
Compostos Azo , Carcinógenos , Exposição Ambiental , Humanos , Compostos Azo/toxicidade , Carcinógenos/análise , Carcinógenos/toxicidade , Corantes/toxicidade , Corantes/química , Mutagênicos/toxicidade , Mutagênicos/análise , Têxteis
10.
Environ Res ; 231(Pt 2): 116142, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217122

RESUMO

The present study identifies and analyses the degraded products of three azo dyes (Reactive Orange 16, Reactive Red 120, and Direct Red 80) and proffers their in silico toxicity predictions. In our previously published work, the synthetic dye effluents were degraded using an ozonolysis-based Advanced Oxidation Process. In the present study, the degraded products of the three dyes were analysed using GC-MS at endpoint strategy and further subjected to in silico toxicity analysis using Toxicity Estimation Software Tool (TEST), Prediction Of TOXicity of chemicals (ProTox-II), and Estimation Programs Interface Suite (EPI Suite). Several physiological toxicity endpoints, such as hepatotoxicity, carcinogenicity, mutagenicity, cellular and molecular interactions, were considered to assess the Quantitative Structure-Activity Relationships (QSAR) and adverse outcome pathways. The environmental fate of the by-products in terms of their biodegradability and possible bioaccumulation was also assessed. Results of ProTox-II suggested that the azo dye degradation products are carcinogenic, immunotoxic, and cytotoxic and displayed toxicity towards Androgen Receptor and Mitochondrial Membrane Potential. TEST results predicted LC50 and IGC50 values for three organisms Tetrahymena pyriformis, Daphnia magna, and Pimephales promelas. EPISUITE software via the BCFBAF module surmises that the degradation products' bioaccumulation (BAF) and bioconcentration factors (BCF) are high. The cumulative inference of the results suggests that most degradation by-products are toxic and need further remediation strategies. The study aims to complement existing tests to predict toxicity and prioritise the elimination/reduction of harmful degradation products of primary treatment procedures. The novelty of this study is that it streamlines in silico approaches to predict the nature of toxicity of degradation by-products of toxic industrial affluents like azo dyes. These approaches can assist the first phase of toxicology assessments for any pollutant for regulatory decision-making bodies to chalk out appropriate action plans for their remediation.


Assuntos
Rotas de Resultados Adversos , Relação Quantitativa Estrutura-Atividade , Protoporfirinogênio Oxidase/metabolismo , Mutagênicos/toxicidade , Compostos Azo/toxicidade , Corantes/toxicidade
11.
Environ Res ; 216(Pt 1): 114407, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36216116

RESUMO

Fungal abetted processes are among the finest approaches for the transformation or degradation and decolorization of dyes in effluents. In this piece of research; biodegradation and metabolic pathways of two toxic dyes Congo Red (CR) and Reactive black 5 (RB5) by two strains of Aspergillus sp. fungus in batch experiments has been investigated. Morphological characteristics of the isolates were observed with both light and electron microscopies. Based on molecular characterization the isolates were identified as Aspergillus flavus and Aspergillus niger. The degradation was also optimized via. operational parameters such as pH, temperature, incubation time, inoculums size, dye concentration, carbon sources and nitrogen sources. Degradation measurements revealed that the isolates effectively degraded 90% and 96% of CR and RB5 respectively. Metabolites were identified with Liquid chromatography-mass spectrometry (LCMS) and degradation pathways of the dyes were proposed. Toxicity assay Phaseolus mungo seeds showed that pure CR and RB5 dyes exhibits significant toxicity whereas fungal treated dye solution resulted in an abatement of the toxicity and cell viability was increased. The results stipulated in this article clearly showed the effectiveness of the isolates on detoxification of CR and RB5 dyes.


Assuntos
Corantes , Águas Residuárias , Corantes/química , Cinética , Biodegradação Ambiental , Vermelho Congo/metabolismo , Aspergillus niger/metabolismo , Compostos Azo/toxicidade , Compostos Azo/metabolismo
12.
Chemosphere ; 313: 137505, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36509189

RESUMO

No biodegradation methods are absolute in the treatment of all textile dyes, which leads to structure-dependent degradation. In this study, biodegradation of three azo dyes, reactive black 5 (RB5), acid blue 113 (AB113), and acid orange 7 (AO7), was investigated using an immobilized fungus, Trametes hirsuta D7. The degraded metabolites were identified using UPLC-PDA-FTICR MS and the biodegradation pathway followed was proposed. RB5 (92%) and AB113 (97%) were effectively degraded, whereas only 30% of AO7 was degraded. Molecular docking simulations were performed to determine the reason behind the poor degradation of AO7. Weak binding affinity, deficiency in H-bonding interactions, and the absence of interactions between the azo (-NN-) group and active residues of the model laccase enzyme were responsible for the low degradation efficiency of AO7. Furthermore, cytotoxicity and genotoxicity assays confirmed that the fungus-treated dye produced non-toxic metabolites. The observations of this study will be useful for understanding and further improving enzymatic dye biodegradation.


Assuntos
Compostos Azo , Trametes , Simulação de Acoplamento Molecular , Biodegradação Ambiental , Compostos Azo/toxicidade , Compostos Azo/metabolismo , Corantes/química , Lacase/química
13.
Chemosphere ; 313: 137614, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36565768

RESUMO

Development of science has taken over our lives and made it mandatory to live with science. Synthetic technology takes more than it has given for our welfare. In the process of meeting the demand of the consumers, industries supported synthetic products to meet the same. One such sector that employs synthetic azo dyes for food coloring is the food industry. The result of the process is the production of a variety of colored foods which looks more appealing and palatable. The process not only meets the consumer's demand it also has an impact on customers' health because the consumption of azo-toxic dye-treated foods regularly or in direct contact with synthetic azo dyes can also cause severe human health consequences. Nanotechnology is a rapidly evolving branch of research in which nanosensors are being developed for a variety of applications, including sensing various azo-toxic dyes in food products, which provides a wider scope in the future, with the innovation in designing different nanosensors. The current review focuses on the different types of nanosensors, their key role in sensing, and the sensing of azo toxic dyes using nanosensors, their advantages over other sensors, applications of nanomaterials, and the health impacts of azo dyes on humans, appropriate parameters for maximum permissible limits, and an Acceptable Daily Intake (ADI) of azo toxic dye to be followed. The regulations followed on the application of colorants to the food are also elaborated. The review also focuses on the application of enzyme-based biosensors in detecting azo dyes in food products.


Assuntos
Corantes , Nanoestruturas , Humanos , Corantes/toxicidade , Compostos Azo/toxicidade , Nanoestruturas/toxicidade , Nível de Efeito Adverso não Observado
15.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142543

RESUMO

The azo dye orange II is used extensively in the textile sector for coloring fabrics. High concentrations of it are released into aqueous environments through textile effluents. Therefore, its removal from textile wastewater and effluents is necessary. Herein, initially, we tested 11 bacterial strains for their capabilities in the degradation of orange II dye. It was revealed in the preliminary data that B. subtilis can more potently degrade the selected dye, which was thus used in the subsequent experiments. To achieve maximum decolorization, the experimental conditions were optimized whereby maximum degradation was achieved at: a 25 ppm dye concentration, pH 7, a temperature of 35 °C, a 1000 mg/L concentration of glucose, a 1000 mg/L urea concentration, a 666.66 mg/L NaCl concentration, an incubation period of 3 days, and with hydroquinone as a redox mediator at a concentration of 66.66 mg/L. The effects of the interaction of the operational factors were further confirmed using response surface methodology, which revealed that at optimum conditions of pH 6.45, a dye concentration of 17.07 mg/L, and an incubation time of 9.96 h at 45.38 °C, the maximum degradation of orange II can be obtained at a desirability coefficient of 1, estimated using the central composite design (CCD). To understand the underlying principles of degradation of the metabolites in the aliquot mixture at the optimized condition, the study steps were extracted and analyzed using GC-MS(Gas Chromatography Mass Spectrometry), FTIR(Fourier Transform Infrared Spectroscopy), 1H and carbon 13 NMR(Nuclear Magnetic Resonance Spectroscopy). The GC-MS pattern revealed that the original dye was degraded into o-xylene and naphthalene. Naphthalene was even obtained in a pure state through silica gel column isolation and confirmed using 1H and 13C NMR spectroscopic analysis. Phytotoxicity tests on Vigna radiata were also conducted and the results confirmed that the dye metabolites were less toxic than the parent dye. These results emphasize that B. subtilis should be used as a potential strain for the bioremediation of textile effluents containing orange II and other toxic azo dyes.


Assuntos
Bacillus subtilis , Água Carbonatada , Compostos Azo/química , Compostos Azo/toxicidade , Bacillus subtilis/metabolismo , Benzenossulfonatos , Biodegradação Ambiental , Carbono/análise , Água Carbonatada/análise , Corantes/química , Glucose , Hidroquinonas , Naftalenos/análise , Sílica Gel , Cloreto de Sódio , Vapor/análise , Têxteis , Ureia , Águas Residuárias/química , Água/análise
16.
Ecotoxicol Environ Saf ; 243: 113985, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36027712

RESUMO

The present study aimed to assess the in-vitro toxicity of a popular azodye, Eriochrome Black T (EBT) which may be an environmental hazard causing water pollution if released by textile industries as waste effluents to nearby water ponds. We explored the toxic potential of EBT at 200, 400 and 800 µg/ml concentrations, which were selected based on quantification of EBT present in the pond water near carpet industries. We investigated the permeability of EBT across the organ barriers and found it to be 6.48 ± 0.44% at the highest concentration. EBT also showed up to 26.46 ± 0.533% hemolytic potential on human RBCs. MTT assay revealed toxicity of up to 64.9 ± 10.12%. A dose-dependent increase in intracellular ROS levels and Caspase 3/7 activity was observed and confocal microscopy also demonstrated a similar trend of cellular apoptosis indicating ROS mediated induction of apoptosis as a mechanism of EBT induced cytotoxicity. After establishing the toxicity of EBT, an innovative nano-photocatalytic approach for dye remediation was applied by using as synthesized Mf-NGr-CNTs-SnO2 heterostructures. This catalyst showed dye degradation potential of up to 82% in 2 h in the presence of sun light. The degraded dye products were tested to have up to 30% reduced cellular toxicity as compared to the parent compound. This work successfully establishes the toxicity of EBT along with devising an innovative approach towards dye degradation where the catalyst is adhered on melamine foam and not being mixed in the effluents directly, thereby, reducing the possibility of catalyst being leached out into the river water.


Assuntos
Compostos Azo , Indústria Têxtil , Compostos Azo/química , Compostos Azo/toxicidade , Corantes/química , Humanos , Espécies Reativas de Oxigênio , Têxteis , Água
17.
Environ Res ; 215(Pt 1): 114120, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36029837

RESUMO

Cytotoxicity in freshwater fishes induced by industrial effluents and dyes is a global issue. Trypan blue dye has many applications in different sectors, including laboratories and industries. This study determines to detect the cytotoxic effects of trypan blue dye in vivo. The objective of this study was to estimate the sub-lethal effects of azodye in fish. Cirrhinus mrigala, a freshwater fish, was exposed to three different grading concentrations of dye 5 mg/L, 10 mg/L, and 20 mg/L in a glass aquarium. Significant (p < 0.05) decrease in the weight of fish was observed as 0.728 ± 0.14 g and 2.232 ± 0.24 g, respectively, in the trial groups exposed to 10 and 20 mg/L of dye in a week. After exposure to trypan blue dye, fishes were dissected to remove liver and kidney tissues. Histopathological assessments determined hepatotoxicity and nephrotoxicity induced by trypan blue through the paraffin wax method. This dye induces mild alterations in the liver such as congestion, hemolysis, dilated sinusoids, ruptured hepatocytes, vacuolization, edema of hepatocytes, necrosis, degeneration, aggregation, and inflammation. This dye not only alters liver tissue, also induces an acute level of tissue alterations in the kidneys, such as degeneration of epithelial cells of renal tubules, shrinkage of the glomerulus, congestion, reduced lumen, degeneration of glomerulus, absence of space of bowmen, glomerulonephritis, necrosis in hematopoietic interstitial tissues and glomerulus, reduced lumen, vacuolar degeneration of renal tubules, increased per tubular space. The current study concludes that trypan blue dye released even in small amounts is found to be associated with a high incidence of cytotoxicity. Such tissue alterations in this species could be used as biomarkers for azo dyes.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Cyprinidae , Animais , Compostos Azo/toxicidade , Biomarcadores , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Corantes/toxicidade , Necrose , Parafina , Azul Tripano/toxicidade
18.
Appl Biochem Biotechnol ; 194(12): 6068-6090, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35881226

RESUMO

A high-performance immobilized bacterial strain coated with magnetic iron oxide nanoparticles was used for Basic Blue 41 azo dye (BB 41 dye) decolorization. To create the coated bacterial strain, Raoultella Ornithinolytica sp. was isolated and identified under the accession number KT213695, then coated with manufactured magnetic iron oxide nanoparticles. SEM and SEM-EDX were used to characterize the coated bacteria and validate its morphological structure formation. The coated Raoultella Ornithinolytica sp. A1 (coated A1) generated a 95.20% decolorization for BB 41 dye at 1600 ppm starting concentration with an optimal dose of coated A1 5 mL/L, pH 8, under static conditions for 24 h at 37 °C. Continuous batch cycles were used, with BB 41 dye (1600 ppm) added every 24 h four times, to achieve a high decolorization efficiency of 80.14%. Furthermore, the metabolites of BB 41 dye biodegradation were investigated by gas chromatographic-mass spectrum analysis (GC-MS) and showed a less toxic effect on the bioindicator Artemia salina. Additionally, 5 mL/L of coated A1 demonstrated the highest decolorization rate (47.2%) when applied to a real wastewater sample after 96 h with a consequent reduction in COD from 592 to 494 ppm.


Assuntos
Compostos Azo , Nanopartículas , Compostos Azo/toxicidade , Compostos Azo/metabolismo , Corantes/metabolismo , Biodegradação Ambiental , Bactérias/metabolismo , Fenômenos Magnéticos
19.
PLoS One ; 17(6): e0269559, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704650

RESUMO

Synthetic dyes are widely used as colorant compounds in various industries for different purposes. Among all the dyestuffs, azo dyes constitute the largest and the most used class of dyes. These dyes and their intermediate products are common contaminants of ground water and soil in developing countries. Biological methods have been found to be promising for the treatment and degradation of these compounds. In the present study, we focused on the biological removal of azo dyes (Reactive orange 16 and Reactive black 5) under aerobic conditions using an indigenous bacterial strain isolated from contaminated industrial areas. The bacterial isolate was identified as Bacillus cereus strain ROC. Degradation experiments under agitation with both free and immobilized cells indicates that this strain degrades both azo- dyes in 5 days. The immobilized cells were more proficient than their free cell counterparts. The toxicity of the biotransformation products formed after decolorization were assessed by conducting bacteriotoxic and phytotoxic assays. All the toxicity assays indicate that the dyes' degraded products were non-toxic in nature, as compared to the dyes themselves. The kinetics of the azo dyes' degradation was also studied at various initial concentration ranges from 50 mg/L to 250 mg/L by growth independent kinetic models. Zero-order kinetics were fit to the experimental data, producing values of least squares regression (R2) greater than 0.98, which indicates that the bacterial strain degrades both dyes by co-metabolism rather than utilizing them as sole energy source. These results indicate that the Bacillus cereus ROC strain has great potential to degrade dye-contaminated water and soil.


Assuntos
Compostos Azo , Bacillus cereus , Compostos Azo/toxicidade , Bacillus cereus/metabolismo , Biodegradação Ambiental , Corantes/metabolismo , Solo
20.
Ecotoxicol Environ Saf ; 238: 113577, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35526458

RESUMO

This study aimed to exploit the potential of Enterococcus faecalis R1107 in the bioremediation of azo dyes. The maximal decolorization of Congo Red (CR), Reactive Black 5 (RB5), and Direct Black 38 (DB38) were 90.17%, 96.82%, and 81.95%, respectively, with the bacterial treatment for 48 h. 65.57% of CR and 72.64% of RB5 could be decolorized by E. faecalis R1107 within 48 h when the concentration of azo dyes increased up to 1000 mg/L. FTIR analysis confirmed that E. faecalis R1107 could effectively break down the chemical structures of three azo dyes. E. faecalis R1107 alleviated the phytotoxicity of azo dyes and improved seed germination, which contributed to the increase in the lengths of roots, stems, and leaves of Vigna radiata seedlings. Transcriptomic analysis suggested that the gene regulatory networks in E. faecalis R1107 synergistically improved the degradation and detoxification of RB5, including the major metabolic pathways, the secondary metabolism, the transport system, the amino acid metabolic pathways, and the signal transduction systems. Simulated textile effluent (STE) was used to mimic real textile effluent to evaluate the bioremediation potential of E. faecalis R1107, and 72.79% STE can be decolorized after E. faecalis R1107 treatment for 48 h. In summary, our study demonstrated that E. faecalis R1107 might be well suitable for potential applications in the bioremediation of textile effluent.


Assuntos
Corantes , Enterococcus faecalis , Compostos Azo/metabolismo , Compostos Azo/toxicidade , Biodegradação Ambiental , Corantes/metabolismo , Vermelho Congo , Enterococcus faecalis/metabolismo , Indústria Têxtil , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...